

Welcome to sGWAS’s documentation!

Contents:

	Guide

	Documentation for ‘sibreg’ module

	Documentation for sGWAS.py script

Indices and tables

	Index

	Module Index

	Search Page

Guide

Introduction

sGWAS is a python library for performing regression with correlated observations within-class.

In the sGWAS/bin there is a script: ‘sGWAS.py’ (Documentation for sGWAS.py script). This script performs GWAS that fits both within and between family effects.

The core model is the sibreg model (sibreg.model), which consists of a linear model for the mean along
with a vector of class labels that allows for correlations within-class. (The correlations within-class result
from modelling mean differences between classes as independent, normally distributed random effects.) For
the application in the script ‘sGWAS.py’, the classes are the families, so correlations are modelled
between all siblings in a family.

The documentation for the sibreg module (Documentation for ‘sibreg’ module) contains information on how to define a sibreg.model,
how to optimise a sibreg.model, how to predict from
a sibreg.model, and how to simulate a sibreg.model.

Running tests

To check that the code is working properly and computing likelihoods and gradients accurately, you can
run tests. In the sGWAS/tests subdirectory, type

python tests.py

The output should say

Ran 4 tests in...

OK

Documentation for ‘sibreg’ module

Documentation for the sibreg model class.

	
class sibreg.model(y, X, labels)

	Define a linear model with within-class correlations.

	Parameters

	
	yarray

	1D array of phenotype observations

	Xarray

	Design matrix for the fixed mean effects.

	labelsarray

	1D array of sample labels

	Returns

	
	modelsibreg.model

	

Methods

	alpha_mle(self, tau[, sigma2, compute_cov])

	Compute the MLE of alpha given variance parameters

	likelihood_and_gradient(self, sigma2, tau)

	Compute the loss function, which is -2 times the likelihood along with its gradient

	optimize_model(self, init_params)

	Find the parameters that minimise the loss function for a given regularisation parameter

	predict(self, X)

	Predict new observations based on model regression coefficients

	set_alpha

	

	
alpha_mle(self, tau, sigma2=nan, compute_cov=False)

	Compute the MLE of alpha given variance parameters

	Parameters

	
	sigma2float [https://docs.python.org/3/library/functions.html#float]

	variance of model residuals

	taufloat [https://docs.python.org/3/library/functions.html#float]

	ratio of variance of model residuals to variance explained by mean differences between classes

	Returns

	
	alphaarray

	MLE of alpha

	
likelihood_and_gradient(self, sigma2, tau)

	Compute the loss function, which is -2 times the likelihood along with its gradient

	Parameters

	
	sigma2float [https://docs.python.org/3/library/functions.html#float]

	variance of model residuals

	taufloat [https://docs.python.org/3/library/functions.html#float]

	ratio of variance of model residuals to variance explained by mean differences between classes

	Returns

	
	L, gradfloat [https://docs.python.org/3/library/functions.html#float]

	loss function and gradient, divided by sample size

	
optimize_model(self, init_params)

	Find the parameters that minimise the loss function for a given regularisation parameter

	Parameters

	
	init_paramarray

	initial values for residual variance (sigma^2_epsilon) followed by ratio
of residual variance to within-class variance (tau)

	Returns

	
	optimdict [https://docs.python.org/3/library/stdtypes.html#dict]

	dictionary with keys: ‘success’, whether optimisation was successful (bool);
‘warnflag’, output of L-BFGS-B algorithm giving warnings; ‘sigma2’, MLE of
residual variance; ‘tau’, MLE of ratio of residual variance to within-class variance;
‘likelihood’, maximum of likelihood.

	
predict(self, X)

	Predict new observations based on model regression coefficients

	Parameters

	
	Xarray

	matrix of covariates to predict from

	Returns

	
	yarray

	predicted values

	
sibreg.simulate(n, alpha, sigma2, tau)

	
	Simulate from a linear model with correlated observations within-class. The mean for each class

	is drawn from a normal distribution.

	Parameters

	
	nint [https://docs.python.org/3/library/functions.html#int]

	sample size

	alphaarray

	value of regression coefficeints

	sigma2float [https://docs.python.org/3/library/functions.html#float]

	variance of residuals

	taufloat [https://docs.python.org/3/library/functions.html#float]

	ratio of variance of residuals to variance of distribution of between individual means

	Returns

	
	modelregrnd.model

	linear model with repeated observations

Documentation for sGWAS.py script

This script uses genotypes of siblings to estimate ‘within family’ and ‘between family’ effects of SNPs.

The script fits models for all SNPs in a .bed file passing MAF and missingness thresholds.

The phenotype file should be a tab separate text file with columns FID, IID, Y1, Y2, …

Siblings should have the same family id (FID), and non-siblings should have different FIDs.

The covariate file formats is the same. The first
column is family ID, and the second column is individual ID; subsequent columns are phenotype or covariate
observations.

Minimally, the script will output a file outprefix.models.gz, which contains a table of within family and between family
effect estimates along with their standard errors and correlation.

If covariates are also specified, it will output estimates of the covariate effects from the null model as
outprefix.null_mean_effects.txt. –no_covariate_estimates suppresses this output.

Arguments

Required positional arguments:

	genofile

	Path to genotypes in BED format

	phenofile

	Location of the phenotype (response) file with format: FID, IID, y1, y2, …

	outprefix

	Location to output csv file with association statistics

Options:

	--mean_covar

	Location of mean covariate file (default no mean covariates)

	--fit_covariates

	Fit covariates for each locus. Default is to fit covariates for the null model and project out the covariates’

	--tau_init

	Initial value for the ratio of within family variance to residual variance. Default 1.0.

	--phen_index

	If the phenotype file contains multiple phenotypes, specify the phenotype to analyse. Default is first phenotype in file.
Index counts starting from 1, the first phenotype in the phenotye file.

	--min_maf

	Ignore SNPs with minor allele frequency below min_maf (default 5%)

	--missing_char

	Missing value string in phenotype file (default NA)

	--max_missing

	Ignore SNPs with greater % missing calls than max_missing (default 5%)

	--append

	Append results to existing output file with given outprefix (default to open new file and overwrite existing file with same name)

	--no_covariate_estimates

	Suppress output of covariate effect estimates

	--fit_VC

	fit variance components for each SNP. Default is to fix variance components at the MLE from the null model (much faster).

	--sex_index

	provide an index (counting from 1) in the covariate file that gives sex coded as 0 for females and 1 for males. Providing an index
causes the script to fit separate within and between family effects for men and women

Example Usage

Minimal usage:

python sGWAS.py genotypes.bed phenotype.fam phenotype

This will estimate between family and within family effects for all the SNPs in genotypes.bed passing MAF and missingness thresholds, using the first phenotype in phenotype.fam. It will output
the results of fitting the models to phenotype.models.gz.

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 sibreg	

Index

 A
 | L
 | M
 | O
 | P
 | S

A

 	
 	alpha_mle() (sibreg.model method)

L

 	
 	likelihood_and_gradient() (sibreg.model method)

M

 	
 	model (class in sibreg)

O

 	
 	optimize_model() (sibreg.model method)

P

 	
 	predict() (sibreg.model method)

S

 	
 	sibreg (module)

 	
 	simulate() (in module sibreg)

 nav.xhtml

 Table of Contents

 		
 Welcome to sGWAS’s documentation!

 		
 Guide

 		
 Documentation for ‘sibreg’ module

 		
 Documentation for sGWAS.py script

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

